Wednesday, January 31, 2018

 

Do Multiple Ways Matter: Using Tech to Make the Connection


Let's be clear counting in small quantities is a skill most kids do naturally without much prompting or coaching needed, in fact the region of the brain we use for counting includes the same portion of the brain that controls our fingers. Research suggests this may be attributed to the fact that our ancestors first experience with numbers involved the fingers (Devlin, 2000).  However counting and calculations that go beyond our friendly finger tips are likely to result in errors. 


When it comes to calculations students need strategies and not just one.  Research suggests students will most likely use a particular strategy that they find to be a more efficient solution for a particular type of problem (Sieger & Jenkinds, 1989). Take for example the problem 6 x 42 . Students who have proficiency with breaking apart numbers can determine they will need to calculate 6 X 40 (240) and 6 X 2 (12) and mentally calculate the total of 252, but when these numbers become much larger 656 X 3245 the standard algorithm may be more efficient. 

Common core mathematics shifts the focus from learning one-way and one-algorithm to understanding the underlying principles of a concept and applying multiple algorithms.   This approach certainly lends itself to going deeper with math through multiple representations and ways of showing what you know.   

The idea that students don't begin with the end in mind but begin with understanding and developing concepts is at the heart of the common core. 


This shift in standards does not guarantee a shift in learning, this will only happen when teachers change the way they teach and curriculum evolves from focusing on some learners, to all learners in the classroom.  From gifted and talented to students with special needs and English language learners, our approach and modes of instruction need to be flexible and supportive of our classroom population.  Students need a variety of pedagogical approaches from number talks that support discussions of strategies and mental calculations, to manipulatives that allow students to construct models and make meaning of concepts.  


So when parents ask, "Why can't they just memorize their multiplication facts"  we can assure them that memorization does not promote understanding and automaticity will develop with practice.  Elementary teachers should begin introducing concepts by building on what children already know and albeit this may be intuitive, it can lead to a deeper understanding of the concepts.  

Rooting math in the lives of the students we teach can support building conceptual understanding as well as transfer the learning of math  (number words, symbols and quantities) into their informal learning experiences such as the park, playing games and with friends.  Take for example the idea of using arrays to introduce the concept of multiplication.  Arrays are all around students but this knowledge needs to be brought forward during instruction and through practice.  It's not enough just to talk about where you might see arrays kids also need to  construct , discover, apply and identify. We should understand that what works for one kind of learner might not work for another.  Woodward and Baxter found that students with disabilites in math tend to make significantly less growth in discussion-oriented classes (1997) than traditional ones.  



Technology can be a great mediator to support, and challenge students with open ended tasks and flexibility.  It can also be useful to move from the abstract to the real-life connection.  
Available as a Google Slide here

Repeated addition is the knowledge students can start with to build an understanding of multiplication, but some students in your class might not have developed automaticity of their addition facts.  Working with arrays that are highly contextualized and not just on a piece of graph paper can provide practice in addition while also introducing the concept of multiplication.  In this video a second-grader works on a Google Slide presentation his teacher made to drag and drop cars into a parking lot.  


 

If our ancestors first counting tool was their fingers then digital devices might be consider the cultural tools for our students today.  


 Using this digital lesson teachers can scaffold instruction and allow students to work at their own pace.  While some students might work with benchmark numbers 2's, 5's, and 10's to construct an array, students who understand the concept of multiplication and have strong number sense in this area can move to more complex equations.  



Are you using technology to support students conceptual understanding in your math class? Share your ideas here and join the conversation on our Facebook Group


Share:

Tuesday, January 16, 2018

 

Connecting Students Lives to Math Across the Curriculum



The excitement of school vacation doesn't end just because students have return to school.  From family trips to visiting relatives, students are filled with life experiences percolating in their mind. This excitement builds when they finally see their classmates and teacher with whom they want to share these experiences with.

Have you thought about ways you might build on student excitement and refocus their energy? Creating learning activities that build on life experiences and reinforces skills might be necessary before moving forward with new skills and standards.

Take a second grade class that has been working on writing addition and subtraction equations, they can practice this skill in the context of surveying classmates about activities they engaged in over winter break. 

While students are collecting data they also have an opportunity to share with their friends about their experiences. They can use this data to write addition and subtraction equations and create a word problem for other classmates to solve. As a whole class you can record all student responses into a larger graph for greater values. This activity reinforces test prep questions that often appear on the smarter balance where students need to read graphs and interpret information. You can bridge this activity across the curriculum by having students write a personal narrative, letter to a friend, thank you letter, or journal entry about one activity they engaged in over break. Here is the activity and remediation strategies for Graphing Winter Activities.



 As this activity was created using word it can be easily adapted for spring break or summer vacation. Furthermore teachers might use this with older kids to create a bigger sample size and collect data outside of their classroom. Rather than having pre-selected activities, older kids can create their own responses for the survey so that results represent multiple data sets.

 What strategies are you using to build on life experiences and share students interests in your classroom?

Join the conversation on our Facebook group
Share: